4 Simulação Computacional

A fim de se investigar o comportamento da Constante Dielétrica de Maxwell-Garnett com relação ao índice de refração do meio onde a interface metal-dielétrico está imersa, foi realizado o cálculo da equação para o campo elétrico da partícula. O campo de extinção é dado por⁵⁷:

$$E = 2\frac{\omega}{c} \left[\text{Im} \sqrt{\varepsilon_{MG}} \right]$$
(40)

onde ε_{MG} é dado pela equação (38).

O programa utilizado foi o Wolfram Mathematica® 6.0.

O sinal apresenta um máximo que corresponde ao pico de absorção LSPR devido às nanopartículas que no caso é o sinal transmitido. Como podemos ver na figura abaixo, o comprimento de onda para o qual temos máximo LSPR se desloca em direção a comprimentos de onda maiores (vermelho) cada vez que se aumenta o valor de ε_h na equação (40). Para a demonstração feita aqui, foram utilizados alguns valores diferentes para o índice de refração variando entre n=1,0 e n=2,0 com incrementos de 0,1 em cada simulação. Lembrando que:

$$\varepsilon_h = n^2 \tag{41}$$

Figura 8: Gráficos obtidos através da simulação computacional da equação (40). Os gráficos são do tipo Campo de Extinção x Comprimento de onda.

Com os gráficos obtidos, foi possível saber os comprimentos de onda para o qual o efeito de LSPR é máximo, em cada uma das curvas:

n	$\Delta\lambda_{MAX}$ (nm)
1,1	08
1,2	16
1,3	25
1,4	32
1,5	44
1,6	54
1,7	65
1,8	76
1,9	88
2,0	100

Tabela 1: Tabela da variação do comprimento de onda LSPR para cada índice de refração do meio em relação ao comprimento de onda LSPR para n=1,00.

Os dados da Tabela 1 foram calculados da seguinte forma:

$$\frac{\Delta\lambda_{MAX}}{U.I.R.} = \frac{(^{i}\lambda_{MAX} - ^{1.00}\lambda_{MAX})}{(i-1.00)}$$
(42)

onde i representa cada um dos índices de refração onde foram realizadas as medições. A equação 42 representa a variação do valor do comprimento de onda onde a extinção é máxima por unidade de índice de refração (U.I.R.). Os valores da Tabela 1 foram utilizados para construir um gráfico do tipo $\Delta\lambda \propto n$ mostrado na figura 9.

Figura 9: Gráfico de $\Delta\lambda$ x n com os valores da Tabela 1, A reta vermelha representa o ajuste feito na curva.

Analisando o gráfico acima, podemos perceber o comportamento linear do deslocamento do pico LSPR em direção aos comprimentos de onda maiores (*red-shift*).

Os valores dos picos de LSPR são mostrados na tabela 2:

n	λ_{MAX} (nm)
1,00	512
1,20	528
1,30	537
1,46	552
1,60	566
1,80	588
2,00	612

Tabela 2: Valores de $\lambda_{\rm MAX}$ para cada índice de refração utilizado na simulação.

Com esses valores obtem-se que a variação do valor do comprimento de onda LSPR quando se aumenta o índice de refração é $\frac{100nm}{1.00u.i.r.}$ (100 nm para um aumento 1 unidade de índice de refração).

Através do comportamento linear observado na variação do comprimento de onda de pico de LSPR em relação ao índice de refração do meio, verifica-se que é possível construir um sensor de índices de refração que se baseia no efeito da LSPR, sendo uma forma simples e eficaz de se medir a variação das características do ambiente onde as nanopartículas estão inseridas.